Schlagwort-Archive: Katalysatoren

Das künstliche Blatt – eine reale Vision?

In Sachen Energiegewinnung können wir Menschen von der Natur viel lernen. Ein prägnantes Beispiel ist die Photosynthese: Zwar ist diese sehr uneffizient, denn sie setzt maximal ein Prozent der Sonnenenergie in gespeicherte Energie um. Das jedoch machen die Pflanzen auf einfachste Art und Weise und mit unnachahmlicher Umweltverträglichkeit. In zwei Halbreaktion spalten die Pflanzen Wasser in Wasserstoff und Sauerstoff. Um diese Reaktionen zu beschleunigen verwenden sie Katalysatoren. Die beiden Halbreaktionen laufen separiert durch eine Membran ab, die den Wasserstoff und den Sauerstoff zwar trennt, Ionen jedoch passieren lässt. Durch diesen Kunstgriff der Natur wird verhindert, dass der leichtbrennbare Wasserstoff bei Anwesenheit von Sauerstoff spontan verbrennt.

Plagiomnium affine, Laminazellen, Rostock, Urheber: Kristian Peters -- Fabelfroh, 2006
Photosynthese – Plagiomnium affine, Laminazellen, Rostock, Foto- Wikipedia Urheber: Kristian Peters – Fabelfroh, 2006

Klingt eigentlich recht unspektakulär, ist es aber dennoch nicht. Seit vielen Jahren stehen zahlreiche Forscher weltweit im Wettstreit um das sogenannte künstliche Blatt. Bisher ergebnislos, jedoch zeichnen sich deutliche Fortschritte ab.
Zwei der weltweit führenden Protagonisten in diesem Forscherwettstreit sind Nathan Lewis und Daniel Nocera. Lewis ist Professor am California Institut of Technologie und Leiter der Forschungsgruppe Joint Center of Artificial Photosynthesis. Prägnant und provokant zugleich ist seine Aussage zur Photovoltaik: „Kein Speicher? Kein Strom nach 16 Uhr.“
Das von den USA finanzierte Forschungsprojekt hat ein Ziel: das künstliche Blatt. Und dieses soll die effektivsten Pflanzen übertreffen.
Prinzipiell muss das künstliche Blatt prozessmäßig sich an das natürliche anlehnen. Bionik nennt sich dieser Wissenschaftszweig. Dennoch kann man die Natur natürlich nicht nachahmen, sondern nur ihr Funktionsprinzip erkennen und technologisch eine vergleichbares entwickeln. Geforscht wird mit PEC – Photoelektrochemische Zellen -, die das Wirkprinzip des Blattes gewissermaßen zu kopieren versuchen. Dazu werden Photoelektroden, die in Wasser getaucht werden, eingesetzt. Welches Licht des Sonnenspektrums dabei genutzt wird ist noch nicht endgültig geklärt. Für die Anode, die Sauerstoff erzeugen soll, wird bläuliches Licht favorisiert, für die Wasserstoff-Kathode eher rötliches Licht.
Damit eine neue Technologie sich verbreiten kann, muss sie mehrere Eigenschaften erfüllen: preisgünstig, effizient, sicher und zudem langlebig. Auch ist auszuschließen, dass dieses „Künstliche Blatt“ auch nur entfernt Ähnlichkeit mit einem Natur-Blatt haben wird; es wird nur dessen elektrochemischen Prozesse zur Energiegewinnung aus Wasser zu reproduzieren versuchen. Als vergleich kann man das Flugzeug heranziehen, das sich wohl als eines der ersten Technikobjekte an dem Flug der Vögel orientierte, optisch – ohne Federn – jedoch kaum noch mit einem Vogel vergleichbar ist.

Halfsize Traumb. V1

Die Probleme bei diesen Prozessen sind die einsetzbaren Materialien, welche die geforderten Eigenschaften erfüllen können. Tausende davon sind heute bekannt, doch welche sind geeignet und dazu preisgünstig, effizient, sicher und langlebig? Computer sind dabei sehr hilfreich, dennoch müssen die so ermittelten Materialien und Verbindungen getestet werden. Und letztlich gehört auch zur Wissenschaft nicht nur umfangreiches Wissen und viel Fleiß, sondern auch eine Portion Glück – eben das Glück des Tüchtigen. Die Forschergruppe von Professor Lewis hatte diesen glücklichen Moment – zumindest teilweise. Bei ihren Forschungen und Experimenten stießen sie auf einen preiswerten Katalysator, der in der Erdölindustrie Schwefel aus den Produkten entfernt und zudem sehr geeignet ist, auch die Wasserstofferzeugung zu beschleunigen. Jedoch gibt es bisher wohl noch einen Wermutstropfen: der Katalysator für die Sauerstofferzeugung wird noch gesucht. Was für Lewis dennoch nicht ganz so tragisch ist, denn sein Schwerpunkt liegt in der Herstellung von Wasserstoff als Energieträger sowie in der Nutzung von Kohlendioxiden, die zu Kohlenwasserstoffen umgewandelt werden sollen.
Nathan Lewis hat einen großen Konkurrenten: Daniel Nocera. Er lehrt auch in den USA, und zwar in Harvard an der Ostküste, verfolgt jedoch einen ganz anderen Lösungsansatz. Nocera setzt nicht wie sein Forscherkollege auf die Produktion von Wasserstoff, sondern will diesen Schritt – hin zu Kohlenwasserstoffen – überspringen. Diese sollen konventionelle Erdölprodukte vollständig ersetzen. Nocera nutzt dabei die zuvor gesammelten Erfahrungen bei der Einführung neuer Technologien und den Verharrungswiderstand der Gesellschaft dagegen. Für Kohlenwasserstoffe könnte die gesamte weltweit vorhandene Erdölinfrastruktur weiterhin genutzt werden – sicherlich ein unschätzbarer Vorteil.




Jedoch ist die Erzeugung selbst einfachster Kohlenwasserstoffe unglaublich komplexer, als die von Wasserstoff und Sauerstoff aus Wasser und auch die ist bisher nur im Laborbetrieb gelungen. Dennoch konnte Prof. Nocera in den letzten Jahren einige außergewöhnliche Erfolge erzielen. Er baute ein Gerät mit einem anorganischen Katalysator, das zunächst Wasserstoff aus Wasser erzeugte. Diesem wurde dann zudem Kohlendioxid zugeführt und mittels gentechnisch veränderter Bakterien wurden aus dem Stoffgemisch flüssige Brennstoffe produziert: Alles jedoch nur unter Laborbedingungen. Die Bakterien vertrugen sich allerdings nicht mit Katalysator, aber irgendwas ist ja immer.
Also wurde nach einem neuen Katalysator gesucht, der sich mit den fleißigen Bakterien vertrug, und er wurde gefunden. Laut Nocera können die Bakterien, in Verbindung mit dem neuen Kobalt-Phosphor-Katalysator, verschiedene Kohlenwasserstoffe produzieren. 2017 setze er mit seinem Team noch einen drauf, in dem er demonstrierte, dass sein technologischer Ansatz auch in der Lage sei, aus dem Stickstoff der Atmosphäre Ammoniak herzustellen. Gelänge das industriell, so würden riesige Mengen an Energie zur Herstellung von Stickstoff-Düngemittel eingespart.
Interessante Aussichten: Dennoch bleibt die Frage, ob gentechnisch veränderte Bakterien die Lösung energetischer Probleme darstellen können, zumal diese sehr fragil sind. Da scheint zunächst die Gewinnung von Wasserstoff und Sauerstoff aus Wasser erfolgversprechender. Doch wer vermag technologische Entwicklungen schon vorauszusehen?